1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
| from __future__ import print_function
import argparse import glob import os import os.path as osp import sys
import imgviz import numpy as np
import labelme
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("input_dir", help="input annotated directory") parser.add_argument("output_dir", help="output dataset directory") parser.add_argument("--labels", help="labels file", required=True) parser.add_argument( "--noviz", help="no visualization", action="store_true" ) args = parser.parse_args()
if osp.exists(args.output_dir): print("Output directory already exists:", args.output_dir) sys.exit(1) os.makedirs(args.output_dir) os.makedirs(osp.join(args.output_dir, "JPEGImages")) os.makedirs(osp.join(args.output_dir, "SegmentationClass")) os.makedirs(osp.join(args.output_dir, "SegmentationClassPNG")) if not args.noviz: os.makedirs( osp.join(args.output_dir, "SegmentationClassVisualization") ) os.makedirs(osp.join(args.output_dir, "SegmentationObject")) os.makedirs(osp.join(args.output_dir, "SegmentationObjectPNG")) if not args.noviz: os.makedirs( osp.join(args.output_dir, "SegmentationObjectVisualization") ) print("Creating dataset:", args.output_dir)
class_names = [] class_name_to_id = {} for i, line in enumerate(open(args.labels).readlines()): class_id = i - 1 class_name = line.strip() class_name_to_id[class_name] = class_id if class_id == -1: assert class_name == "__ignore__" continue elif class_id == 0: assert class_name == "_background_" class_names.append(class_name) class_names = tuple(class_names) print("class_names:", class_names) out_class_names_file = osp.join(args.output_dir, "class_names.txt") with open(out_class_names_file, "w") as f: f.writelines("\n".join(class_names)) print("Saved class_names:", out_class_names_file)
for filename in glob.glob(osp.join(args.input_dir, "*.json")): print("Generating dataset from:", filename)
label_file = labelme.LabelFile(filename=filename)
base = osp.splitext(osp.basename(filename))[0] out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg") out_cls_file = osp.join( args.output_dir, "SegmentationClass", base + ".npy" ) out_clsp_file = osp.join( args.output_dir, "SegmentationClassPNG", base + ".png" ) if not args.noviz: out_clsv_file = osp.join( args.output_dir, "SegmentationClassVisualization", base + ".jpg", ) out_ins_file = osp.join( args.output_dir, "SegmentationObject", base + ".npy" ) out_insp_file = osp.join( args.output_dir, "SegmentationObjectPNG", base + ".png" ) if not args.noviz: out_insv_file = osp.join( args.output_dir, "SegmentationObjectVisualization", base + ".jpg", )
img = labelme.utils.img_data_to_arr(label_file.imageData) imgviz.io.imsave(out_img_file, img)
cls, ins = labelme.utils.shapes_to_label( img_shape=img.shape, shapes=label_file.shapes, label_name_to_value=class_name_to_id, ) ins[cls == -1] = 0
labelme.utils.lblsave(out_clsp_file, cls) np.save(out_cls_file, cls) if not args.noviz: clsv = imgviz.label2rgb( cls, imgviz.rgb2gray(img), label_names=class_names, font_size=15, loc="rb", ) imgviz.io.imsave(out_clsv_file, clsv)
labelme.utils.lblsave(out_insp_file, ins) np.save(out_ins_file, ins) if not args.noviz: instance_ids = np.unique(ins) instance_names = [str(i) for i in range(max(instance_ids) + 1)] insv = imgviz.label2rgb( ins, imgviz.rgb2gray(img), label_names=instance_names, font_size=15, loc="rb", ) imgviz.io.imsave(out_insv_file, insv)
if __name__ == "__main__": main()
|