0%

labelme使用

自动摘要: 背景: 1.用Python编写的,并使用Qt作为其图形界面。[https://github.com/wkentaro/labelme](https://github.com/wkentaro/ ……..

背景:

  1. 用Python编写的,并使用Qt作为其图形界面。https://github.com/wkentaro/labelme
  2. 支持多边形、矩形、圆形、直线和点的图像注释/视频注释;
  3. 支持导出开源数据类型VOC 格式,COCO 格式

安装:

1
pip install labelme

或者到github下载二进制文件进行安装

生成:

  • 如图,会生成图片对应的json,json内部记录构成线段点的坐标,图片base64编码

转换成VOC样本:

inputs文件夹:所有json文件;voc_dataset文件夹:输出VOC数据集的路径;

1
python .\labelme2voc.py --labels .\label_names.txt .\inputs\  ./voc_dataset  --noviz
1
2
3
4
__ignore__
_background_
gum
teeth
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from __future__ import print_function

import argparse
import glob
import os
import os.path as osp
import sys

import imgviz
import numpy as np

import labelme


def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("input_dir", help="input annotated directory")
parser.add_argument("output_dir", help="output dataset directory")
parser.add_argument("--labels", help="labels file", required=True)
parser.add_argument(
"--noviz", help="no visualization", action="store_true"
)
args = parser.parse_args()

if osp.exists(args.output_dir):
print("Output directory already exists:", args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, "JPEGImages"))
os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
os.makedirs(osp.join(args.output_dir, "SegmentationClassPNG"))
if not args.noviz:
os.makedirs(
osp.join(args.output_dir, "SegmentationClassVisualization")
)
os.makedirs(osp.join(args.output_dir, "SegmentationObject"))
os.makedirs(osp.join(args.output_dir, "SegmentationObjectPNG"))
if not args.noviz:
os.makedirs(
osp.join(args.output_dir, "SegmentationObjectVisualization")
)
print("Creating dataset:", args.output_dir)

class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == "__ignore__"
continue
elif class_id == 0:
assert class_name == "_background_"
class_names.append(class_name)
class_names = tuple(class_names)
print("class_names:", class_names)
out_class_names_file = osp.join(args.output_dir, "class_names.txt")
with open(out_class_names_file, "w") as f:
f.writelines("\n".join(class_names))
print("Saved class_names:", out_class_names_file)

for filename in glob.glob(osp.join(args.input_dir, "*.json")):
print("Generating dataset from:", filename)

label_file = labelme.LabelFile(filename=filename)

base = osp.splitext(osp.basename(filename))[0]
out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")
out_cls_file = osp.join(
args.output_dir, "SegmentationClass", base + ".npy"
)
out_clsp_file = osp.join(
args.output_dir, "SegmentationClassPNG", base + ".png"
)
if not args.noviz:
out_clsv_file = osp.join(
args.output_dir,
"SegmentationClassVisualization",
base + ".jpg",
)
out_ins_file = osp.join(
args.output_dir, "SegmentationObject", base + ".npy"
)
out_insp_file = osp.join(
args.output_dir, "SegmentationObjectPNG", base + ".png"
)
if not args.noviz:
out_insv_file = osp.join(
args.output_dir,
"SegmentationObjectVisualization",
base + ".jpg",
)

img = labelme.utils.img_data_to_arr(label_file.imageData)
imgviz.io.imsave(out_img_file, img)

cls, ins = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=label_file.shapes,
label_name_to_value=class_name_to_id,
)
ins[cls == -1] = 0 # ignore it.

# class label
labelme.utils.lblsave(out_clsp_file, cls)
np.save(out_cls_file, cls)
if not args.noviz:
clsv = imgviz.label2rgb(
cls,
imgviz.rgb2gray(img),
label_names=class_names,
font_size=15,
loc="rb",
)
imgviz.io.imsave(out_clsv_file, clsv)

# instance label
labelme.utils.lblsave(out_insp_file, ins)
np.save(out_ins_file, ins)
if not args.noviz:
instance_ids = np.unique(ins)
instance_names = [str(i) for i in range(max(instance_ids) + 1)]
insv = imgviz.label2rgb(
ins,
imgviz.rgb2gray(img),
label_names=instance_names,
font_size=15,
loc="rb",
)
imgviz.io.imsave(out_insv_file, insv)


if __name__ == "__main__":
main()

欢迎关注我的其它发布渠道