1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
| # ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Created by Tianheng Cheng(tianhengcheng@gmail.com), Yang Zhao # ------------------------------------------------------------------------------ #郭金玉 import cv2 import torch import scipy import scipy.misc import numpy as np # import os # os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import PIL
MATCHED_PARTS = { "300W": ([1, 17], [2, 16], [3, 15], [4, 14], [5, 13], [6, 12], [7, 11], [8, 10], [18, 27], [19, 26], [20, 25], [21, 24], [22, 23], [32, 36], [33, 35], [37, 46], [38, 45], [39, 44], [40, 43], [41, 48], [42, 47], [49, 55], [50, 54], [51, 53], [62, 64], [61, 65], [68, 66], [59, 57], [60, 56]), "AFLW": ([1, 6], [2, 5], [3, 4], [7, 12], [8, 11], [9, 10], [13, 15], [16, 18]), "COFW": ([1, 2], [5, 7], [3, 4], [6, 8], [9, 10], [11, 12], [13, 15], [17, 18], [14, 16], [19, 20], [23, 24]), "WFLW": ([0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], # check [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], # elbrow [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [87, 83], [86, 84], [88, 92], [89, 91], [95, 93], [96, 97])}
def fliplr_joints(x, width, dataset='aflw'): """ flip coords """ matched_parts = MATCHED_PARTS[dataset] # Flip horizontal x[:, 0] = width - x[:, 0]
if dataset == 'WFLW': for pair in matched_parts: tmp = x[pair[0], :].copy() x[pair[0], :] = x[pair[1], :] x[pair[1], :] = tmp else: for pair in matched_parts: tmp = x[pair[0] - 1, :].copy() x[pair[0] - 1, :] = x[pair[1] - 1, :] x[pair[1] - 1, :] = tmp return x
def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale])
scale_tmp = scale * 200.0 src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1]
rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def crop_v2(img, center, scale, output_size, rot=0): trans = get_affine_transform(center, scale, rot, output_size)
dst_img = cv2.warpAffine( img, trans, (int(output_size[0]), int(output_size[1])), flags=cv2.INTER_LINEAR )
return dst_img
def get_transform(center, scale, output_size, rot=0): """ General image processing functions """ # Generate transformation matrix h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(output_size[1]) / h t[1, 1] = float(output_size[0]) / h t[0, 2] = output_size[1] * (-float(center[0]) / h + .5) t[1, 2] = output_size[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3, 3)) rot_rad = rot * np.pi / 180 sn, cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0, :2] = [cs, -sn] rot_mat[1, :2] = [sn, cs] rot_mat[2, 2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0, 2] = -output_size[1] / 2 t_mat[1, 2] = -output_size[0] / 2 t_inv = t_mat.copy() t_inv[:2, 2] *= -1 t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) return t
def transform_pixel(pt, center, scale, output_size, invert=0, rot=0): # Transform pixel location to different reference t = get_transform(center, scale, output_size, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2].astype(int) + 1
def transform_preds(coords, center, scale, output_size): for p in range(coords.size(0)): coords[p, 0:2] = torch.tensor(transform_pixel(coords[p, 0:2], center, scale, output_size, 1, 0)) return coords
def crop(img, center, scale, output_size, rot=0): center_new = center.clone()
# Preprocessing for efficient cropping ht, wd = img.shape[0], img.shape[1] sf = scale * 200.0 / output_size[0] if sf < 2: sf = 1 else: new_size = int(np.math.floor(max(ht, wd) / sf)) new_ht = int(np.math.floor(ht / sf)) new_wd = int(np.math.floor(wd / sf)) if new_size < 2: return torch.zeros(output_size[0], output_size[1], img.shape[2]) \ if len(img.shape) > 2 else torch.zeros(output_size[0], output_size[1]) else: # img = scipy.misc.imresize(img, [new_ht, new_wd]) # (0-1)-->(0-255) #old img = np.array(PIL.Image.fromarray(np.uint8(img)).resize((new_ht, new_wd))) center_new[0] = center_new[0] * 1.0 / sf center_new[1] = center_new[1] * 1.0 / sf scale = scale / sf
# Upper left point ul = np.array(transform_pixel([0, 0], center_new, scale, output_size, invert=1)) # Bottom right point br = np.array(transform_pixel(output_size, center_new, scale, output_size, invert=1))
# Padding so that when rotated proper amount of context is included pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) if not rot == 0: ul -= pad br += pad
new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]]
new_img = np.zeros(new_shape, dtype=np.float32)
# Range to fill new array new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(len(img[0]), br[0]) old_y = max(0, ul[1]), min(len(img), br[1]) new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
if not rot == 0: # Remove padding from skimage import transform #******** # new_img = scipy.misc.imrotate(new_img, rot) # old new_img = transform.rotate(new_img, rot) # ********* # new_img = scipy.ndimage.interpolation.rotate(new_img, rot) # new
new_img = new_img[pad:-pad, pad:-pad] # new_img = scipy.misc.imresize(new_img, output_size) # old scipy=1.2.1 Pillow=6.0.0 # print("*************************output_size:", tuple(output_size), type(new_img)) # ******** "https://www.cnblogs.com/Timeouting-Study/p/12356833.html" new_img = np.array(PIL.Image.fromarray(np.uint8(new_img)).resize(tuple(output_size))) # new_img = np.array(PIL.Image.fromarray(new_img).resize((output_size[0], output_size[1]))) return new_img
def generate_target(img, pt, sigma, label_type='Gaussian'): # Check that any part of the gaussian is in-bounds tmp_size = sigma * 3 ul = [int(pt[0] - tmp_size), int(pt[1] - tmp_size)] br = [int(pt[0] + tmp_size + 1), int(pt[1] + tmp_size + 1)] if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0 or br[1] < 0): # If not, just return the image as is return img
# Generate gaussian size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 if label_type == 'Gaussian': g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) else: g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5)
# Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return img
|